

Fuel Cell Presentation For Clean Distributed Generation: Local Siting, Permitting and Code Issues

Kenneth Krastins

November 7, 2001

Overview

- ◆ Fuel Cell Fundamentals & Principles Of Operation
- ◆ Fuel Cell Technologies
- Codes & Standards Requirements
- Summary

Fuel Cells Defined

"Fuel Cells are electrochemical devices that convert the chemical energy of reaction directly into electrical energy."

Fuel Cells: A Handbook

How Fuel Cells Work

PEM Fuel Cell Process

Electricity is generated via an electrochemical process versus traditional combustion. The outputs from the fuel cell are electricity, water and heat.

Fundamentals of a PEM Fuel Cell

Fuel Cell Stack

FUEL CELLS - CONCEPT

- ◆ FUEL CELL POWER PLANT
 - FUEL CELL STACK
 - FUEL PROCESSING
 - ELECTRIC POWER CONVERSION
 - BALANCE OF PLANT

Fuel Cells Are Environmentally Clean

Source: NRDC Reports: Choosing Clean Power, March 1997

FUEL CELL TECHNOLOGIES

			Efficiency (%)	
Fuel Cell		Operating		
Technology	Electrolyte	Temperature	Electrical	Overall
	lon exchange			
PEMFC	membrane	50 C	30-35	50-60
AFC	KOH	80 C	Low	Low
	Phosphoric			
PAFC	Acid	200 C	36	80
	Alkali			
MCFC	carbonates	650 C	45-55	75-80
SOFC - High	Solid metal			
Temp.	oxide	980 C	45-47	75-80
SOFC - Reduced	Solid metal			
Temp.	oxide	660 C	42-45	60-70

Source: SFCCG, Inc. (Aug. 1997)

Product Requirements

- ◆ ANSI Z21.83 Fuel Cell Power Plants
 - Applies to fuel cells with an electrical output less than 1MW
- ◆ UL 1741 UL Standard for Safety for Inverters, Converters, and Controllers for Use in Independent Power Systems

Installation Requirements

- ◆ NFPA 853 Standard for the Installation of Stationary Fuel Cell Power Plants
 - Current edition applies to systems larger than 50kW only but consideration is being given to expand requirements to cover all fuel cell installations.
- ◆ NFPA 54 National Fuel Gas Code
- ◆ NFPA 70 National Electrical Code®
- Codes, Rules, and Regulations of the State of New York
- ◆ ICC International Building Code

Electrical Interconnection Requirements

- ♦ NYS Standardized Interconnection Requirements (SIR) for Distributed Resources <300kW On Radial Feeders
- ◆ Other State Requirements Texas, California, Etc.
- ◆ IEEE 929 Recommended Practice for Utility Interface of Photovoltaic (PV) Systems
 - Applies to installations <10kW

Requirements Under Development

- ◆ ASME Performance Test Code (PTC) 50 Fuel Cells
- ◆ NFPA 70 2002 National Electrical Code® Article 692 – Fuel Cell Systems
- ◆ IEEE 1547 Standard for Interconnecting Distributed Resources with Electric Power Systems
- ◆ IEC TC105 IEC (International) Fuel Cell Standard

The Stationary Fuel Cell System

